三极管

光电二极管原理 什么是光电二极管?光电二极管相关知识详解,图文结合,通俗易懂

小编 2025-01-21 三极管 23 0

什么是光电二极管?光电二极管相关知识详解,图文结合,通俗易懂

大家好,我是李工,希望大家多多支持我。顺便说一句,我居家办公了。

什么是光电二极管?

光电二极管是一种将光转换为电流的半导体器件,在 p(正)和 n(负)层之间,存在一个本征层。 光电二极管接受光能作为输入以产生电流。光电二极管也被称为光电探测器,光电传感器或光探测器。

光电二极管工作在反向偏置条件下,即光电二极管的p-侧与电池(或电源)的负极相连,n-侧与电池的正极相连。 典型的光电二极管材料是硅、锗、磷化砷化铟镓和砷化铟镓。

在内部,光电二极管具有滤光器、内置透镜和表面区域 。当光电二极管的表面积增加时,会缩短响应时间。很少有光电二极管看起来像发光二极管 (LED)。它有两个终端,如下所示。较小的端子用作阴极,较长的端子用作阳极。

光电二极管图片

光电二极管的图片符号

光电二极管的图片符号

光电二极管的符号类似于 LED 的符号,但箭头指向内部而不是 LED 中的外部。下图显示了光电二极管的符号。

光电二极管符号

光电二极管原理

光电二极管的工作原理是,当一个能量充足的光子撞击二极管时,会产生一对电子空穴。这种机制也称为内光电效应。 如果在耗尽区结中出现吸收,则载流子被耗尽区的内置电场从结中去除。

光电二极管工作原理图

通常当用光照亮PN结的时,共价键被电离。这会产生空穴和电子对。由于电子-空穴对的产生而产生光电流。当能量超过 1.1eV 的光子撞击二极管时,就会形成电子空穴对。当光子进入二极管的耗尽区时,它以高能量撞击原子。这导致从原子结构中释放电子。电子释放后,产生自由电子和空穴。具体的可以看下图。

光子产生电子/空穴对

反向偏压吸引空穴和电子

空穴和电子形成光电电流

一般来说,电子带负电荷,空穴带正电荷。耗尽能量将具有内建电场。由于该电场,电子-空穴对远离PN结。因此,空穴向阳极移动,电子向阴极移动以产生光电流。

光子吸收强度和光子能量彼此成正比。照片能量越少,吸收越多。这整个过程被称为内光电效应。

内在激发和外在激发是发生光子激发的两种方法。当价带中的电子被光子激发到导带时,就会发生本征激发过程。

光电二极管的工作电路

光电二极管主要以三种不同的模式工作,是:

光伏模式光电导模式雪崩二极管模式

光伏模式

这种模式也称为零偏压模式。当光电二极管工作在低频应用和超能级光应用时,这种模式是首选。当闪光照射光电二极管时,会产生电压。产生的电压将具有非常小的动态范围,并且具有非线性特性。当光电二极管在此模式下配置 OP-AMP ,随温度的变化将非常小。

光电二极管光伏模式电路图

光电导模式

在这种模式下,光电二极管将在反向偏置条件下工作。阴极为正极,阳极为负极。当反向电压增加时,耗尽层的宽度也会增加。因此,响应时间和结电容将减少。相比之下,这种操作模式速度快,并且会产生电子噪音。

光电二极管光电导模式电路图

雪崩二极管模式

雪崩二极管在高反向偏置条件下工作,这允许雪崩击穿倍增到每个光电产生的电子-空穴对。该结果是光电二极管的内部增益,它会缓慢增加设备响应。

光电二极管电路

光电二极管的电路图如下所示。该电路可以用一个 10k 电阻器和光电二极管构建。一旦光电二极管注意到光线,它就会允许一些电流通过它。通过该二极管提供的电流总和可以与通过二极管观察到的光的总和成正比。

光电二极管电路图

在外部电路中连接光电二极管

光电二极管在反向偏置的电路中工作。阳极连接到电路地,阴极连接到电路的正电源电压。当被光照射时,电流从阴极流向阳极。

在外部电路中连接光电二极管电路图

当光电二极管与外部电路一起使用时,它们连接到电路中的电源。光电二极管产生的电流量将非常小。该电流值不足以驱动电子设备。因此,当它们连接到外部电源时,它会为电路提供更多电流。因此,电池被用作电源。电池源有助于增加电流值,有助于外部设备具有更好的性能

光电二极管的制造过程

光电二极管材料

光电二极管的材料决定了它的许多特性。关键特性是光电二极管响应的光的波,另一个是噪音水平,这两者在很大程度上取决于光电二极管中使用的材料。

由于使用不同材料而导致对波长的不同响应发生,因为只有具有足够能量的光子才能在材料的带隙中激发电子,才会产生显著的能量来产生来自光电二极管的电流。

常用光电二极管材料的波长范围

材料

波长

灵敏度 (NM)

800 - 1700

砷化铟镓

800 - 2600

硫化铅

~1000 - 3500

190 - 1100

虽然材料的波长敏感性非常重要,但另一个可能对光电二极管性能产生重大影响的参数是产生的噪声水平。

由于其更大的带隙,硅光电二极管产生的噪声比锗光电二极管要小。然而,还需要考虑需要光电二极管的波长,并且锗光电二极管必须用于长于大约 1000 nm 的波长。

光电二极管结构

光电二极管的关键要求之一是收集光的合适区域。 在标准 PN 结内,这相对较小,但可以通过使用 PIN 二极管来增加面积。由于本征区域包含在用于集光的有源结中,因此用于集光的区域要大得多,从而使 PIN 光电二极管更有效。

在光电二极管制造过程中,在 P 型和 N 型层之间插入了厚的本征层。 该中间本征层可以是完全本征的,或者是非常轻掺杂的以使其成为N-层。在某些情况下,它可以作为外延层生长到衬底上,或者它可以包含在衬底本身内。

P+扩散层的开发可以在重掺杂的N型外延层上进行。触点采用金属设计,可制成阳极和阴极等两个端子。 二极管的前部区域可以分为两种类型,例如有源表面和无源表面。

非活性表面的设计可以用二氧化硅 (SiO2) 完成。在活动表面上,光线可以照射在其上,而在非活动表面上,光线不能照射。 通过抗反射材料覆盖活性表面,使光的能量不会损失,最高可以转化为电流。

光电二极管结构图

光电二极管的主要要求之一是确保最大量的光到达本征层。实现这一点的最有效方法之一是将电触点放置在设备的侧面 ,如图所示。这使得最大量的光能够到达有效区域。发现由于衬底是重掺杂的,由于这不是有源区,因此几乎没有光损失。

由于光在一定距离内大部分被吸收,本征层的厚度通常与此相匹配。任何超过此厚度的增加都会降低操作速度——这是许多应用中的一个重要因素,并且不会大大提高效率。

也可以让光从结的一侧进入光电二极管。通过以这种方式操作光电二极管,可以使本征层变得更少以提高操作速度,尽管效率降低。

在某些情况下,可以使用异质结。这种结构形式具有额外的灵活性,可以从基板接收光,并且具有更大的能隙,使其对光透明。

光电二极管结构图

作为一个不太标准的过程,它的实施成本更高,因此往往被用于更专业的产品。

光电二极管特性

伏安特性

它是指光电二极管上的光电流与施加在其上的电压之间的关系。

光电二极管伏安特性图

光照特性

它是指在阴极和阳极之间的光电二极管电压恒定时,光通量与光电流的关系。光特性曲线的斜率称为光电二极管灵敏度。

光谱特性

光电流与入射光波长之间的关系称为光谱特性。光子能量与光波长有关:波长越长,光子能量越小;波长越短,光子能量越大。

光电二极管的作用与用途

光电二极管的功能

光电二极管广泛用于:

1.光控

光电二极管可用作光电开关,其电路如下图所示。当没有光时,光电二极管VD1由于反向电压而截止。晶体管VT1和VT2也因无基极电流而截止。继电器处于释放状态。

当光在 VD1 上发射时,它从截止过渡到导通。于是,VT1、VT2依次导通,继电器K吸合,接通控制电路。

2. 光信号接收

光电二极管可用于接收光信号。下图为光信号接收放大光电二极管电路。光信号由光电二极管VD接收,经VT放大,通过耦合电容C输出。

用于光信号接收的光电二极管

VI 光电二极管应用

具体的光电二极管应用是:

1. 光电管

光电管本质上是一个大面积的PN结。当光在一个 PN 结表面上发射时,例如 P 区表面,如果光子能量大于半导体材料的禁带带宽,则 P 区中的每个光子都会产生一个自由电子-空穴对。

光电管

电子-空穴对迅速向内扩散,并在结电场下形成与光强相关的电动势。

这时候,如果我们把它作为电源,连接到外部电路,只要有光,它就会持续供电,这就是光电池。换句话说,光电池是一种没有偏置电压 的PN结光电器件。它可以直接将光能转化为电能。

2.太阳能电池

太阳能电池是一种半导体器件。当阳光照射到半导体上时,一部分被反射,其余部分被吸收或穿透半导体。

一些吸收的光变成热,而其他光子与构成半导体的价电子碰撞,从而产生电子-空穴对。这样,光能就转化为电能。

因此,在太阳光照射后,太阳能电池的两端会产生直流电压,从而将太阳光能量 直接转化为直流电流 。如果我们将金属引线焊接到 P 层和 N 层,并连接负载,电流将流过外部电路。

这样,如果我们把光电管串并联起来,就可以产生一定的电压和电流,从而输出功率。

3、光伏发电照明系统

光伏发电系统是利用太阳能电池将太阳能转化为电能的发电系统。它利用光伏效应。

主要部件是太阳能电池、蓄电池、控制器和逆变器。可靠性高、使用寿命长、无污染、独立发电、光电二极管并网运行。

由于光电二极管光伏模式受光线、温度等外界环境因素影响较大,工作点变化较快。有独立发电系统和并网发电系统。

(1) 独立光伏发电系统

独立光伏发电系统是一种不接入电网的发电方式。它需要电池来为夜间储存能量。独立太阳能光伏发电主要用于偏远村庄和家庭

伏发电系统结构图

(2)并网光伏发电系统

并网光伏发电系统接入国家电网为电网供电。它不需要电池。住宅光伏发电系统大多在家庭中。它们还用于公共设施、夜间景观照明系统和太阳能农场。

光电二极管的其他应用有:

用作光传感器的光电二极管。由于其中的电流与光的强度成正比,因此也用于测量光的强度。可以使用烟雾探测器中的光电二极管来感知烟雾和火灾。光电二极管与led配合制作光隔离器和光耦合器在太阳能电池板中用作太阳能电池用于条码扫描器、字符识别用于障碍物检测系统,可在打印机中用作页面存在和页面计数器用于接近检测、血氧计它也用于光学编码器和解码器光信息传输,基于光纤的通信位置传感器

光电二极管选型参数

有四个主要参数用于选择正确的光电二极管以及是否对光电二极管进行反向偏置。

暗电流

在光电导模式下,当没有光时,通过光电二极管的电流为暗电流。光电二极管中的暗电流包括半导体结的辐射电流和饱和电流。必须提前测量。特别是在精密光功率测量中,必须仔细考虑和纠正暗电流引起的误差。

光电二极管响应时间

响应速率是光导模式下的光电流与应急灯的比值,单位为 A/W。响应特性也可以表示为光电二极管的量子效率,即光产生的载流子数与应急光光子数之比。

噪声等效功率(NEP)

噪声等效功率是指产生光电流所需的最小光功率,它等于 1 Hz 时噪声功率的 RMS。它大约等于光电二极管的最小可检测输入功率。一个相关的属性是检测率 (D),它是噪声等效功率的倒数。

频率响应特性

主要由三个因素决定:

(1) 耗尽层附近光生载流子的扩散时间;

(2) 耗尽层中光生载流子的漂移时间;

(3) 由负载电阻和并联电容决定的电路时间常数。

其他重要参数包括材料、光电二极管和有源区域的尺寸以及成本 。在采购你需要的光电二极管时,需要仔细考虑。

由不同材料(硅、锗、砷化铟镓磷化物或砷化铟镓)制成的光电二极管具有不同级别的灵敏度以及不同的速度和暗电流。例如,硅对约 400 到 1000 nm 的波长提供灵敏度。然而,它在较高波长(~900 nm)下具有最高的灵敏度。

另一方面,锗对约 800 至 1600 nm 之间的波长(峰值约 1400 nm)提供灵敏度。

光电二极管怎么测好坏?

电阻测量方法

使用万用表的“1k”来测试光电二极管。光电二极管的正向电阻约为 10K Ω 。

无光时,若测得的反向电阻 ,则说明二极管良好,或漏电流较大。

有光照时,反向电阻随光照强度的增加而减小。如果电阻可以达到几kΩ ;或低于1k Ω,二极管是好的;如果反向电阻为 或为零,则二极管已损坏。

电压测量方法

使用万用表的“1V”档。将红色表笔接到光电二极管的正极,黑色表笔接到负极。在光照下,电压与光照强度成正比,一般可达0.2V-0.4V。

光电二极管测电路图

短路电流测量方法

使用万用表的“50 μA ”档。将红色表笔接到光电二极管正极,黑色表笔接到负极。在白炽灯(不是荧光灯)下,如果短路电流随着光的增加而增加,则二极管是好的。短路电流可达数十至数百μA。

有时,需要区分红外发光二极管和红外光电二极管。

如果它们都用透明树脂包装,我们可以看到它们的模具安装。红外 LED 管芯下方有一个浅板,但没有光电二极管管芯。

红外光电二极管

如果它是一个小型光电二极管或者它是用黑色树脂包装的,您可以使用万用表(设置为 1k 档)测量电阻。

首先,确保二极管没有暴露在光线下。如果测得的正向电阻为20-40kΩ ,反向电阻大于200kΩ ,则正向电阻约为10k,反向电阻接近 ,即为光电二极管。

以上就是关于光电二极管的一些知识,请大家多多指教。如果有什么错误或者疑问,欢迎在评论区留言。

图片来源于网络

发光二极管的工作原理是什么?为什么可以发出不同颜色的光?

大家好,我是李工,希望大家多多支持我。

今天给大家讲一下发光二极管。

什么是发光二极管?

发光二极管(LED)本质上是一种特殊类型的二极管,因为发光二极管具有与PN结二极管非常相似的电气特性。当电流流过发光二极管(LED)时,发光二极管(LED)允许电流正向流动,并且阻止电流反向流动。

发光二极管由非常薄的一层但相当重掺杂的半导体材料制成。根据所使用的半导体1材料和掺杂量,当正向偏置时,发光二极管(LED)将发出特定光谱波长的彩色光 。如下图所示,发光二极管(LED)用透明罩封装,以可以发出光来。

发光二极管实物图

发光二极管电路符号

发光二极管符号与二极管符号相似,只是有两个小箭头表示光的发射 ,因此称为发光二极管(LED)。发光二极管包括两个端子,即阳极(+)和阴极(-),发光二极管的符号如下所示。

发光二极管符号

发光二极管正负极怎么区分?

这个在我之前的文章里面有详细的讲解,可以直接点击下面这个文章。

二极管怎么区分正负极

这里简单地讲一下。

发光二极管比较常用,正负极容易区分。长引脚为正极,短引脚为负极。 引脚相同的情况下,LED管体内极小的金属为正极,大块的为负极。 贴片式发光二极管,一般都有一个小凸点区分正负极,有特殊标记为负极,无特殊标记为正极。

发光二极管正负极性判断图

发光二极管正负极性判断图

发光二极管怎么测好坏?

更为具体的,大家可以去看我的这篇文章,直接点击进入就可以了。

二极管怎么测好坏?

发光二极管的工作原理

发光二极管在正向偏置时发光,当在结上施加电压以使其正向偏置时,电流就像在任何 PN 结的情况下一样流动。来自 p 型区域的空穴和来自 n 型区域的电子进入结并像普通二极管一样重新组合以使电流流动。当这种情况发生时,能量被释放,其中一些以光子的形式出现。

发现大部分光是从靠近 P 型区域的结区域产生的。因此,二极管的设计使得该区域尽可能靠近器件的表面,以确保结构中吸收的光量最少。具体的原理可以看下图。

发光二极管工作原理图

上图显示了发光二极管的工作原理以及该图的分布过程。

从上图中,我们可以观察到 N 型硅是红色的,包括由黑色圆圈表示的电子。P 型硅是蓝色的,它包含空穴,它们由白色圆圈表示。pn结上的电源使二极管正向偏置并将电子从n型推向p型。向相反方向推动空穴。结处的电子和空穴结合在一起。随着电子和空穴的重新结合,光子被释放出来。

发光二级管原理图

发光二极管怎么发出不同颜色的光?

发光二极管 由特殊半导体化合物制成,例如砷化镓 (GaAs)、磷化镓 (GaP)、砷化镓磷化物 (GaAsP)、碳化硅 (SiC) 或氮化镓铟 (GaInN) 都以不同的比例混合在一起,以产生不同波长的颜色。

不同的 LED 化合物在可见光谱的特定区域发光,因此产生不同的强度水平。所用半导体材料的准确选择将决定光子发射的总波长,从而决定发射光的颜色。

发光二极管的实际颜色取决于所发射光的波长,而该波长又取决于制造过程中用于形成 PN 结的实际半导体化合物。

因此,LED 发出的光的颜色不是由 LED 塑料体的颜色决定的,尽管这些塑料体略微着色以增强光输出并在其未被电源照亮时指示其颜色。

发光二极管材料

为了产生可以看见的光,必须优化PN结并且必须选择正确的材料。常用的半导体材料包括硅和锗,都是一些简单的元素,但这些材料制成的PN结不会发光。相反,包括砷化镓、磷化镓和磷化铟在内的化合物半导体是化合物半导体,由这些材料制成的结确实会发光。

纯砷化镓在光谱的红外部分释放能量,为了将光发射带入光谱的可见红色端,将铝添加到半导体中以产生砷化铝镓 (AlGaAs),也可以添加磷以发出红光。对于其他颜色,则使用其他材料。例如,磷化镓发出绿光,而铝铟镓磷化物则用于发出黄光和橙光,大多数发光二极管基于镓半导体。

不同发光二极管的材料

砷化镓 (GaAs) – 红外线砷化镓磷化物 (GaAsP) – 红色至红外线,橙色砷化铝镓磷化物 (AlGaAsP) – 高亮度红色、橙红色、橙色和黄色磷化镓 (GaP) – 红色、黄色和绿色磷化铝镓 (AlGaP) – 绿色氮化镓 (GaN) – 绿色、翠绿色氮化镓铟 (GaInN) – 近紫外线、蓝绿色和蓝色碳化硅 (SiC) – 蓝色作为基材硒化锌 (ZnSe) – 蓝色氮化铝镓 (AlGaN) – 紫外线

更加具体的大家可以看下面这个图,下图涵盖了发光二极管的材料,发光二极管颜色,发光二极管工作电压、发光二极管波长。

发光二极管颜色材料对应图

发光二极管VI特性

目前有不同类型的发光二极管可供选择,并且拥有不同的LED 特性,包括颜色光或波长辐射、光强度。LED的重要特性是颜色。 在开始使用 LED 时,只有红色。随着半导体工艺的帮助,LED的使用量增加,对LED新金属的研究,形成了不同的颜色。

发光二极管VI特性图

发光二极管的应用

LED 有很多应用,下面将解释其中的一些。

LED在家庭和工业中用作灯泡发光二极管用于摩托车和汽车这些在手机中用于显示消息在红绿灯信号灯处使用 LED

发光二极管串联电阻电路

串联电阻值R S可以通过简单地使用欧姆定律计算得出,通过知道 LED 所需的正向电流I F、组合两端的电源电压V S和 LED 的预期正向电压降V F在所需的电流水平,限流电阻计算如下:

LED串联电阻电路

发光二极管示例

正向压降为 2 伏的琥珀色 LED 将连接到 5.0v 稳定直流电源。使用上述电路计算将正向电流限制在 10mA 以下所需的串联电阻值。如果使用 100Ω 串联电阻而不是先计算,还要计算流过二极管的电流。

1)串联电阻需要在 10mA 。

发光二极管串联电阻公式

2)用100Ω串联电阻。

发光二极管串联电流公式

上面的第一个计算表明,要将流过 LED 的电流精确地限制在 10mA,我们需要一个300Ω的电阻器。在E12系列电阻中没有300Ω电阻,因此我们需要选择下一个最高值,即330Ω。快速重新计算显示新的正向电流值现在为 9.1mA。

发光二极管串联电路

我们可以将 LED 串联在一起,以增加所需的数量或在显示器中使用时增加亮度。与串联电阻一样,串联的 LED 都具有相同的正向电流,IF仅作为一个流过它们。由于所有串联的 LED 都通过相同的电流,因此通常最好是它们都具有相同的颜色或类型。

发光二极管串联电路图

虽然 LED 串联链中流过相同的电流,但在计算所需的限流电阻R S电阻时,需要考虑它们之间的串联压降。如果我们假设每个 LED 在点亮时都有一个 1.2 伏的电压降,那么这三个 LED 上的电压降将为 3 x 1.2v = 3.6 伏。

如果我们还假设三个 LED 由同一个 5 V逻辑器件点亮或提供大约 10 毫安的正向电流,同上。然后电阻两端的电压降RS及其电阻值将计算为:

发光二极管串联公式

同样,在E12(10% 容差)系列电阻器中没有140Ω电阻器,因此我们需要选择下一个最高值,即150Ω。

用于偏置的发光二极管电路

大多数 LED 的额定电压为 1 伏至 3 伏,而正向电流额定值为 200 毫安至 100 毫安。

用于偏置的发光二极管电路图

LED 偏压如果向 LED 施加电压(1V 至 3V),则由于施加的电压在工作范围内的电流流动,因此它可以正常工作。类似地,如果施加到 LED 的电压高于工作电压,则发光二极管内的耗尽区将由于高电流而击穿。这种意想不到的高电流会损坏设备。

这可以通过将电阻与电压源和 LED 串联来避免。LED 的安全额定电压范围为 1V 至 3 V,而安全额定电流范围为 200 mA 至 100 mA。

这里,设置在电压源和 LED 之间的电阻器称为限流电阻器,因为该电阻器限制电流的流动,否则 LED 可能会损坏它。所以这个电阻在保护LED方面起着关键作用。

流过 LED 的电流可以写成:

IF = Vs – VD/Rs

'IF' 是正向电流

“Vs”是电压源

“VD”是发光二极管两端的电压降

“Rs”是限流电阻

电压量下降以破坏耗尽区的势垒。LED 电压降范围为 2V 至 3V,而 Si 或 Ge 二极管为 0.3,否则为 0.7 V。

因此,与Si或Ge二极管相比,LED可以通过使用高电压来操作。

发光二极管比硅或锗二极管消耗更多的能量来工作。

发光二级管驱动电路

TTL 和 CMOS 逻辑门的输出级都可以提供和吸收有用的电流量,因此可用于驱动 LED。普通集成电路 (IC) 在灌入模式配置中具有高达 50mA 的输出驱动电流,但在源极模式配置中具有约 30mA 的内部限制输出电流。

通过上面应该已经很明白了,无论哪种方式,都必须使用串联电阻将 LED 电流限制在安全值。以下是使用反相 IC 驱动发光二极管的一些示例,但对于任何类型的集成电路输出,无论是组合的还是顺序的,其想法都是相同的。

IC发光二极管驱动电路

IC驱动LED电路图

如果多个LED需要同时驱动,例如在大型 LED 阵列中,或者集成电路的负载电流过高,或者只使用分立元件而不是IC。那么另一种驱动方式下面给出了使用双极 NPN 或 PNP 晶体管作为开关的 LED。和以前一样,需要一个串联电阻R S来限制 LED 电流。

晶体管驱动电路

晶体管LED驱动电路

发光二极管的亮度不能通过简单地改变流过它的电流来控制。允许更多电流流过 LED 会使其发光更亮,但也会导致其散发更多热量。LED 旨在产生一定数量的光,工作在大约 10 至 20mA 的特定正向电流下。

在节电很重要的情况下,可以使用更少的电流。但是,将电流降低到 5mA 以下可能会使其光输出变暗,甚至将 LED 完全“关闭”。控制 LED 亮度的更好方法是使用称为“脉冲宽度调制”或 PWM 的控制过程,其中 LED 根据所需的光强度以不同的频率重复“打开”和“关闭”。

使用PWM的发光二极管光强度

PWM的LED光强度图

当需要更高的光输出时,具有相当短占空比(“ON-OFF”比)的脉冲宽度调制电流允许二极管电流,因此在实际脉冲期间输出光强度显着增加,同时仍保持 LED “平均电流水平”和安全范围内的功耗。

这种“开-关”闪烁条件不会影响人眼所见,因为它“填充”了“开”和“关”光脉冲之间的间隙,只要脉冲频率足够高,使其看起来像连续的光输出。因此,频率为 100Hz 或更高的脉冲实际上在眼睛看来比具有相同平均强度的连续光更亮。

LED显示屏

除了单色或多色 LED 外,多个发光二极管还可以组合在一个封装内,以生产条形图、条形、阵列和七段显示器等显示器。

7 段 LED 显示屏在正确解码时提供了一种非常方便的方式,以数字、字母甚至字母数字字符的形式显示信息或数字数据,顾名思义,它们由七个单独的 LED(段)组成,在一个单独的展示包中。

为了分别产生所需的从0到9和A到F的数字或字符,需要在显示屏上点亮 LED 段的正确组合。标准的七段 LED 显示屏通常有八个输入连接,每个 LED 段一个,一个用作所有内部段的公共端子或连接。

共阴极显示器 (CCD) – 在共阴极显示器中,LED 的所有阴极连接都连接在一起,并且通过应用高逻辑“1”信号照亮各个段。共阳极显示器 (CAD) – 在共阳极显示器中,LED 的所有阳极连接都连接在一起,并且通过将端子连接到低逻辑“0”信号来照亮各个段。

典型的七段 LED 显示屏

典型七段LED显示屏

发光二极管光耦合器

最后,发光二极管的另一个有用应用是光耦合 。也称为光耦合器或光隔离器,是由发光二极管与光电二极管、光电晶体管或光电三端双向可控硅开关组成的单个电子设备,可在输入之间提供光信号路径连接和输出连接,同时保持两个电路之间的电气隔离。

光隔离器由一个不透光的塑料体组成,在输入(光电二极管)和输出(光电晶体管)电路之间具有高达 5000 伏的典型击穿电压。当需要来自低电压电路(例如电池供电电路、计算机或微控制器)的信号来操作或控制另一个在潜在危险电源电压下操作的外部电路时,这种电气隔离特别有用。

光电二极管和光电晶体管光耦合器

光隔离器中使用的两个组件,一个光发射器,如发射红外线的砷化镓 LED 和一个光接收器,如光电晶体管,光耦合紧密,并使用光在其输入之间发送信号和/或信息和输出。这允许信息在没有电气连接或公共接地电位的电路之间传输。

光隔离器是数字或开关器件,因此它们传输“开-关”控制信号或数字数据。模拟信号可以通过频率或脉宽调制来传输。

LED的优缺点

发光二极管 的优点包括以下几点。

LED的成本更低,而且很小。通过使用 LED 的电力进行控制。LED 的强度在微控制器的帮助下有所不同。长寿命高效节能无预热期崎岖不受低温影响定向显色性非常好环保可控

发光二极管 的缺点包括以下几点。

价钱温度敏感性温度依赖性光质电极性电压灵敏度效率下降对昆虫的影响

以上就是关于发光二极管的一些基础知识及工作原理,大家有什么疑问,欢迎在评论区留言。

图片来源于网络

相关问答

【光电管的工作原理】作业帮

[最佳回答]光电管原理是光电效应.它一种是半导体材料类型的光电管,它的工作原理:光电二极管又叫光敏二极管,是利用半导体的光敏特性制造的光接受器件.当光照强...

PIN光敏二极管的工作原理?

PIN型光电二极管也称PIN结二极管、PIN二极管,在两种半导体之间的PN结,或者半导体与金属之间的结的邻近区域,在P区与N区之间生成I型层,吸收光辐射而产生光电...

红外光电二极管是红外接收管吗?

红外光电二极管又叫红外接收二极管,也可称红外光敏二极管。它能很好地接收红外发光二极管发射的波长为94Onm的红外光信号,而对于其他波长的光线则不能接收。因...

光电二极管时间响应特性?

特性:响应速度非常快,因具有倍速作用,故可检测微弱光。用途:高速光通信、高速光检测工作原理光电二极管是将光信号变成电信号的半导体器件。响应度是光生...

光敏二极管的工作原理是什么?有哪些用途?-设计本有问必答

光敏二极管工作原理是将光信号变成电信号的半导体器件。核心部分是PN结。光敏二极管也叫光电二极管。光敏二极管与半导体二极管在结构上是类似的,...

发光二极管的原理是什么?

LED是lightemittingdiode的缩写,中文名称“发光二极管”其发光原理跟激光的产生相似。一个原子中的电子有很多能级,当电子从高能级向低能级跳变时,电子的...

二极管电压放大电路原理?

光电二极管工作时采用零偏置(光伏)模式或反向偏置(光导)模式。光伏模式可获得最精确的线性运算,而让二极管工作在光导模式可实现更高的开关速度,但代价是降...

光电开关原理是什么?

1.光电开关原理是利用光电效应或光敏电阻效应来实现光信号与电信号之间的转换。2.光电开关中常用的光电效应是光电二极管的工作原理,当光照射到光电二极管上...

发光二极管的工作原理-WSXvMprPdUa的回答-懂得

如果通过电注入使半导体导带中积累一定浓度的电子,它们将自发的与价带空穴复合,以光子的形式释放出等于或大于禁带宽带的能量,发光二极管就是基于着...

发光二极管发电原理?

它是半导体二极管的一种,可以把电能转化成光能。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N...

猜你喜欢