二极管

二极管压降是什么意思 二极管导通压降详解

小编 2024-11-24 二极管 23 0

二极管导通压降详解

二极管,(英语: ),电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。而变容二极管(Varicap Diode)则用来当作电子式的可调 。大部分二极管所具备的电流方向性我们通常称之为“整流(Rec fying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。早期的真空电子二极管;它是一种能够单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。早期的二极管包含“猫须晶体(“Cat‘s Whisker” Crystals)”以及真空管(英国称为“热游离阀(Thermionic Valves)”)。现今最普遍的二极管大多是使用半导体材料如硅或锗。

工作原理

晶体二极管为一个由p型半导体和n型半导体形成的pn结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于pn结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,pn结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。pn结的反向击穿有齐纳击穿和雪崩击穿之分。

什么是二极管的压降和导通压降

二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。

正向特性

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

反向特性

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

二极管导通压降的原理详解

1、二极管导通电压

二极管最大特性是具有单向导通性,因此被广泛应用于整流电路、开关电路、 等场合。所谓单向导电性,是指在二极管PN结两端接入反向电压时,二极管截止;在PN结两端接一定值的正向电压时,二极管才能导通。这个一定值的正向电压,就是二极管的正向导通压降。大学学习时常把二极管导通压降认定为0.7V,但实际上,二极管的正向导通压降并不是固定不变,而是和二极管流过的电流、环境温度有关,它们的关系如下。

i = IS(equ/kT - 1)

其中,IS是二极管的反向饱和电流,q是电子电量,k是玻尔兹曼常数,T是热力学温度。在二极管的datasheet中也可以看到正向电压的曲线图。

当温度一定时,流过二极管的电流越大,导通电压越大。本人由于需要,将1N4148接在电源输出端做防反接,当流过0~100mA电流时,1N4148输出端电压纹波达600mV,导致系统工作不正常。

由于二极管的导通压降和流过的电流成正比,减小电流的跳动范围,就可以减小导通压降的变化幅度。在二极管输出端加入10mA的恒定负载,当流过1N4148的电流从10mA至100mA时,输出电压纹波降到了260mV。

2、二极管结电容

二极管结电容也是容易被人忽视的重要参数。在低频电路中,结电容的影响可以忽略不计。但在高频电路中,结电容过大甚至能造成电路工作不正常。

以ESD保护二极管为例。为了防止外部静电损坏内部电路,在高速通讯接口处通常都会加上ESD保护器件。ESD本身存在数十皮法的结电容,由于高速信号驱动能力有限,结电容越大,总线频率越高,信号上升时间就越大,最终可能造成总线通讯失败。因此将二极管应用在高速信号上时,尽量选择结电容小的型号。

如果二极管型号已经确定无法修改,而又要降低结电容时该怎么办呢?

从上表看到,二极管结电容和其承受的反向电压呈反比,反向电压越大,结电容越小。因此可以通过增大二极管承受的反向电压来降低二极管的结电容。

如何正确使用二极管的导通压降

二极管,(英语: ),电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。而变容二极管(Varicap Diode)则用来当作电子式的可调 。大部分二极管所具备的电流方向性我们通常称之为“整流(Rec fying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。早期的真空电子二极管;它是一种能够单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。早期的二极管包含“猫须晶体(“Cat‘s Whisker” Crystals)”以及真空管(英国称为“热游离阀(Thermionic Valves)”)。现今最普遍的二极管大多是使用半导体材料如硅或锗。

特性

正向性

外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。当二极管两端的正向电压超过一定数值 ,内电场很快被削弱,特性电流迅速增长,二极管正向导通。 叫做门坎电压或 ,硅管约为0.5V,锗管约为0.1V。硅二极管的正向导通压降约为0.6~0.8V,锗二极管的正向导通压降约为0.2~0.3V。

反向性

外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。一般硅管的反向电流比锗管小得多,小功率硅管的反向饱和电流在nA数量级,小功率锗管在μA数量级。温度升高时,半导体受热激发,少数载流子数目增加,反向饱和电流也随之增加。

击穿

外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。引起电击穿的临界电压称为二极管反向击穿电压。电击穿时二极管失去单向导电性。如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。因而使用时应避免二极管外加的反向电压过高。

二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管因为灯丝的热损耗,效率比晶体二极管低,所以现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。

二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。

二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。

特性曲线

与PN结一样,二极管具有单向导电性。硅二极管典型伏安

特性曲线(图)。在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律增大,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。

对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。在二极管加有反向电压,当电压值较小时,电流极小,其电流值为反向饱和电流IS。当反向电压超过某个值时,电流开始急剧增大,称之为反向击穿,称此电压为二极管的反向击穿电压,用符号UBR表示。不同型号的二极管的击穿电压UBR值差别很大,从几十伏到几千伏。

反向击穿按机理分为齐纳击穿和雪崩击穿两种情况。在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。

雪崩击穿

另一种击穿为雪崩击穿。当反向电压增加到较大数值时,外加电场使电子漂移速度加快,从而与共价键中的价电子相碰撞,把价电子撞出共价键,产生新的电子-空穴对。新产生的电子-空穴被电场加速后又撞出其它价电子,载流子雪崩式地增加,致使电流急剧增加,这种击穿称为雪崩击穿。无论哪种击穿,若对其电流不加限制,都可能造成PN结永久性损坏。

什么是二极管的正向导通压降

极管在正向导通的时候,流过电流的时候会产生压降。

一般情况下,这个压降和正向电流以及温度有关。通常硅二极管,电流越大,压降越大。温度越高,压降越小。

但是碳化硅二极管却是温度越高,压降越大。

如何正确使用二极管的导通压降

二极管电子电路中最基础的元器件之一。作为最常见的元器件之一,二极管的基本性能参数我们都很熟悉,但也有一些很重要的参数很容易被我们忽视,它们到底是什么参数呢?

1、二极管导通电压 二极管最大特性是具有单向导通性,因此被广泛应用于整流电路、开关电路、 等场合。所谓单向导电性,是指在二极管PN结两端接入反向电压时,二极管截止;在PN结两端接一定值的正向电压时,二极管才能导通。这个一定值的正向电压,就是二极管的正向导通压降。大学学习时常把二极管导通压降认定为0.7V,但实际上,二极管的正向导通压降并不是固定不变,而是和二极管流过的电流、环境温度有关,它们的关系如下:i=IS(equ/kt-1) 其中,IS是二极管的反向饱和电流,q是电子电量,k是玻尔兹曼常数,T是热力学温度。在二极管的datasheet中也可以看到正向电压的曲线图

当温度一定时,流过二极管的电流越大,导通电压越大。将1N4148接在电源输出端做防反接,当流过0~100mA电流时,1N4148输出端电压纹波达600mV,导致系统工作不正常。 由于二极管的导通压降和流过的电流成正比,减小电流的跳动范围,就可以减小导通压降的变化幅度。在二极管输出端加入10mA的恒定负载,当流过1N4148的电流从10mA至100mA时,输出电压纹波降到了260mV。

2、二极管结电容 二极管结电容也是容易被人忽视的重要参数。在低频电路中,结电容的影响可以忽略不计。但在高频电路中,结电容过大甚至能造成电路工作不正常。 以ESD保护二极管为例。为了防止外部静电损坏内部电路,在高速通讯接口处通常都会加上ESD保护器件。ESD本身存在数十皮法的结电容,由于高速信号驱动能力有限,结电容越大,总线频率越高,信号上升时间就越大,最终可能造成总线通讯失败。因此将二极管应用在高速信号上时,尽量选择结电容小的型号。 如果二极管型号已经确定无法修改,而又要降低结电容时该怎么办呢? 从下表看到,二极管结电容和其承受的反向电压呈反比,反向电压越大,结电容越小。因此可以通过增大二极管承受的反向电压来降低二极管的结电容。

发光二极管的导通压降和电流

1. 直插超亮发光二极管压降

主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下:

红色发光二极管的压降为2.0--2.2V

黄色发光二极管的压降为1.8—2.0V

绿色发光二极管的压降为3.0—3.2V

正常发光时的额定电流约为20mA。

2.贴片LED压降

红色的压降为1.82-1.88V,电流5-8mA

绿色的压降为1.75-1.82V,电流3-5mA

橙色的压降为1.7-1.8V,电流3-5mA

兰色的压降为3.1-3.3V,电流8-10mA

白色的压降为3-3.2V,电流10-15mA.

超亮发光二极管主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下:

红色发光二极管的压降为2.0--2.2V

黄色发光二极管的压降为1.8—2.0V

绿色发光二极管的压降为3.0—3.2V

正常发光时的额定电流约为20mA。

红色1.5-1.8v,

绿色1.6-2.0v

黄色1.6-2.0v

兰色2.2v

白色3.2-3.6v

红色LED是1.6V,

黄色约1.7V,

绿色约1.8V,

蓝色白色紫色都是3V到3.2V,

全部采用恒流驱动,

其中直径3毫米的红绿黄5毫安,

白蓝紫10毫安,

直径5毫米的翻倍。

其中白色的有大功率的1W2W3W都有,但是要加散热片。

锂电池的最低工作电压是3.6V,充满为4.2V,

铅电池单个2V,极限充电电压2.3V,最低放电电压1.7V,

镍镉、镍氢电池单电压1.2V,终止放电电压1V,极限充电电压1.42V。

一次性锂电池3V电压。

太阳能电池单体电压0.8V左右,电流根据面积和材料决定。

相关问答

二极管 压降什么意思 啊?怎么解释啊?

二极管的结构是在硅材料或锗材料上渗入不同的杂质形成PN结由于电流只能由P结流向N结所以叫正向导通,但是PN结导通时都要有一个压降,硅管的正向压降是0.6伏左右...

压降是什么 _作业帮

[最佳回答]管压降可以理解为电流通过时两端的电压例如二极管正向导通时的管压降硅管为0.7V锗管为0.3V可以理解为二极管本身是一个电阻而导通时电阻会分压...

半导体里的 压降是什么意思 ?

二极管门坎电压,例如锗管,硅锗两种材料,由于浓度差内部存在电子漂移,会行程内部电场。所以如果想让二极管导通,必须先克服内部电场,所以存在的压降其实是克...

什么是 压降 二极?

■对于普通二极管,就是它在电路中有电流流过时它两端的正向压降,对锗二极管一般是0.3V左右,对硅二极管一般是0.7V左右。如果电流较大,它是稳定值,如果电流较...

二极管 的导通电压 是什么意思 - 懂得

二极管的导通电压是二极管正向导通后,它的正向压降基本保持不变(硅管为0.7v,锗管为0.3v)。正向特性:在电子电路中,将二极管的正极接在高电位端,负极...

压降 和电压一样吗?

当然是可变的只是变化不大。教科书是的确说了“硅二极管导通时0.7v,锗二极管导通时0.5v'”,但这也只是一个平均取值,并不是完全不变的,在这个平均取值周围变...

不管你外面加多大的电压, 二极管 两端的 压降 只有0.其它的电...

[最佳回答]工程上进行粗略计算的时候是这样算的,但是不可一概而论.看看二极管的伏安特性曲线,0.7V左右时很陡的,也就是说在0.7左右电压很难出现大的变化,要使...

二极管 的导通 压降 怎么算?

二极管具有单向导电性,一只理想的二极管加正向的偏压时导通,电阻为0;反向偏压时截止,电阻无穷大但实际的二极管不是理想二极管,需要一个二极管“开启”的最...

二极管 并联有什么区别?都说有压降,那并联后是不是 压降 就小了?

二极管同向并联,导通状态下不能减少并联二极管两端的电压降,原因在于二极管是一个非线性元件,其两端所加正向电压低于其正向导通电压时,呈现电阻极大,而当一...

什么二极管 正向导通 压降是 0V?

一般来说,二极管正向导通都会有压降的。硅材料二极管压降一般为0.6-0.7V。锗材料二极管压降一般为0.2-0.3V。如果压降为零可能二极管被短路或击穿了。如果还不...

猜你喜欢