场效应管

二极管整流原理 什么是整流二极管?整流二极管的作用与原理,一文全部讲清楚

小编 2024-10-06 场效应管 23 0

什么是整流二极管?整流二极管的作用与原理,一文全部讲清楚

大家好,我是李工,希望大家能够多多支持我。

今天给大家分享一下关于整流二极管作用、原理、正负极区分、参数等方面的知识。

什么是整流二极管?

整流二极管是一种对电压具有整流作用的二极管,可以将交流电整成直流电。常应用于整流电路中,多采用硅半导体制成,能够承载高电流值。 也可以用锗半导体制成,锗二极管具有较低的允许反向电压以及较低的允许结温。在数字电子产品中,通过肖特基势垒使用整流二极管具有巨大的价值。该二极管可以控制从mA到几KA的电流,从几V到几KV的电压。

整流二极管电路符号

到底什么是整流?

有些人会有疑问,到底是什么整流?这里给大家解释一下。二极管的作用是允许电流仅沿一个方向流动,而整流就是将交流波形施加到二极管上,整流二极管就只会允许在波形的一半以上导通,剩下的一半被挡住了,这个就是整流二极管的整流动作。 具体的可以看下图,更为直观。

整流二极管整流过程

整流二极管特性

整流二极管的正向特性随电流大小和温度而变化。在低电流区,V F 在高温下较低,而在高电流区则相反。一般情况下,二极管应在Q点以下有足够的温度裕量使用,即上述两个条件的交叉点。

整流二极管特性图

载流子迁移率占主导地位的蓝色区域:V F 随着温度的升高而降低。由于载体在变热时容易移动,因此VF低于低温时。载流子碰撞占主导地位的红色区域:V F 随温度升高而升高。

当大电流流动时,大量载流子移动。在高温的情况下,载流子之间的碰撞概率增加,V F 变得高于低温。

整流二极管工作原理

整流二极管N型和P型材料都与特殊的制造技术化学结合以形成PN 结。因为这个PN结有两个可以看作电极的端子,所以被称为“DIODE”(二极管)。当外部直流电源电压通过其端子施加到任何电子设备时,就会发生偏置。

无偏整流二极管

无偏置:当没有电压提供给整流二极管时,就被称为无偏整流二极管。

N侧将有大部分电子,由于热激发,空穴数量比较少,而P侧将有大部分电荷载流子空穴和很少数量的电子。在这个过程中,来自N侧的自由电子将扩散到P侧,并在存在的空穴中发生重组,导致正离子固定在N侧,负离子固定在P侧。

在靠近结边缘的N型侧不动,类似地,在靠近结边缘的P型侧中也有固定离子。因此,大量的正离子和负离子积聚在连接处,这样形成的这个区域称为耗尽区。在这个区域,二极管的PN结上会产生一个称为势垒电位的静电场,它可以防止空穴和电子进一步迁移穿过结。

无偏置整流二极管

正偏整流二极管

正向偏置:在PN结二极管中,电压源的正端连接到p型侧,负端连接到N型侧,二极管处于正向偏置状态。

电子被直流电压源的负极端排斥并向正极端漂移,因此,在施加电压的影响下,这种电子漂移会导致电流在半导体中流动。该电流称为“漂移电流”。由于多数载流子是电子,所以 N型电流是电子电流。

由于空穴是P型的多数载流子,它们会被直流电源的正极端子排斥并穿过结向负极端子移动。所以,P型的电流就是空穴电流。因此,由于多数载流子产生的总电流会产生正向电流。常规电流方向从电池正极流向负极,常规电流方向与电子流向相反。

正向偏置整流二极管

反向偏置二极管

反向偏置条件:如果二极管为源极电压的正端接n型端,源极负端接二极管的p型端,则不会有电流通过二极管除了反向饱和电流。这是因为在反向偏置条件下,结的耗尽层随着反向偏置电压的增加而变宽。

尽管由于少数载流子,二极管中的N型端流向P型端的电流很小。该电流称为反向饱和电流。少数载流子主要是分别在P型半导体和N型半导体中热产生的电子/空穴。

现在如果二极管两端的反向施加电压不断增加,那么在一定电压后耗尽层将被破坏,这将导致巨大的反向电流流过二极管。如果该电流没有受到外部限制并且超出安全值,则二极管可能会永久损坏。

这些快速移动的电子与设备中的其他原子发生碰撞,从而从它们中分离出更多的电子。如此释放的电子通过破坏共价键进一步从原子中释放出更多的电子。这个过程称为载流子倍增,并导致通过PN结的电流显着增加。相关的现象称为雪崩击穿。

反向偏置整流二极管

整流二极管技术参数

允许的极限参数 特征参数

VF :由 IF 正向电流确定的正向电压

IR :VRWM峰值:反向电压运行时的反向电流。

IFN :正向偏置二极管的最大平均电流或额定电流。

IFRM :峰值、可重复电流二极管导通

IFSM :峰值、不可重复电流传导

VRWM :代表峰值反向电压操作

VRRM :代表峰值重复反向电压

VRSM :代表峰值、非重复反向电压

PTOT :电子元件上耗散的功率总值。

Tj :二极管的最高结温 Rth – 低于工作条件的热阻

Rth :工作条件下的热阻

二极管的最大瞬时电流 (它决定了过载电阻)

整流二极管的作用

整流二极管最大的作用就是常用在整流电路中。主要是以下几种整流电路。

桥式整流电路

由于以下原因,桥式整流器分为不同的类型:

供电电压结构及相数:单相桥式整流电路、多相桥式整流电路(三相桥式整流电路、两相桥式整流电路)。多种半波整流电压:单桥(半波整流)、双桥(全波二极管整流)。也可以创建像单相全波桥式整流电路或三相全波整流器这样的组合电路,也可以将相数与全波或半波整流电路相结合。负载类型:电阻、电容、电感。

桥式整流电路的特性:

V ——电源电压VOS , I OS – 组件恒定输出电压I OSmax – 最大输出电流N ip – 能源效率电路纹波系数 V Rmax – 最大反向电压

半波桥式整流电路

半波桥式整流电路是最简单的电路,可以将交流电(两个符号,+ 和 -)转换为一个符号 (+) 的电流。将得到的输出电流进一步滤波后,即可变为直流。

在这个电路的输出上,可以获得一个只有正半周期的正弦波,这就是它实际上被称为半波整流器的原因。正弦波不会有“负部分”,因为整流二极管只有在正向偏置(正电压)时才导通。电流仅在一个方向以脉动方式流过电阻负载。

简单的半波桥式整流二极管电路示例如下所示:

半波整流电路图

半波桥式整流器的特性:

半波整流电路的时间特性图

全波桥式整流电路

全波桥式整流器电路如下图所示,通常被称为格雷茨桥。

全波整流电路图

全波桥式整流电路的工作原理如下。下图(红色)显示了电流的路径,两个红色二极管正向偏置(传导电流),而另外两个反向偏置(不传导电流)。电流从电源流过第一个红色二极管。然后从第一个红色二极管通过负载。在它通过负载后,它将流过第二个红色二极管,然后返回电源。

全波整流电路(交流电,反向偏置)

全波桥式整流器的特性如下图所示:

全波整流电路的时间特性图

三相桥式整流器

在任何三相电压电路中都可以使用三相二极管桥式整流电路(全波桥式整流Diablo)。在这种情况下,输出电压的纹波最小。电源最大程度地利用了电路的电源。三相桥式整流电路通常具有控制输出电流的能力。

可以在下面观察三相整流电路原理图,该原理图可以知道是如何建立三相整流电路的。

三相整流电路原理图及特性图

三相桥式整流电路计算

下面是三相桥式整流堤坝路计算的示例,其中包含给定方案的方程式和值。结果如下表所示。

P d – 功率输出

V d – 整流电压的平均值

I d = P d /V d – 整流电流的平均值

R = V d /I d – 系统电阻

三相线性桥式整流电路

整流二极管怎么区分正负极

根据外观

在我的上一篇文章《二极管怎么区分正负极》里面也有讲。

整流二极管在黑色的外壳上通常有白色环标注的一端为负极、另一端为正极。

整流二极管极性标识图片

使用欧姆表

在正向偏置模式下,欧姆表将显示二极管正向电压的估计值,接近 0.07。在反向偏置中,欧姆表读数为“1”,表示电阻极高。

整流二极管正向偏置电压图

正向偏置:欧姆表将显示二极管正向电压的近似值(接近 0.7V)

整流二极管反向偏置电压图

反向偏置:欧姆表读数为“1”,表示电阻极高(电动阀关闭)

使用万用表

万用表将显示正向偏置下硅二极管的电压降为 0.7V。万用表用于反向偏置,以指定全电压电源的估计值。

整流二极管正向偏置电压图

正向偏置:对于硅二极管,在万用表上应该可以看到大约 0.7% 的电压降。

整流二极管反向偏置电压图

反向偏置:万用表将显示电源的近似全电压值(注意:在此示例中,二极管插入的方向与上一个示例相反。实际上,会反转电源的极性,因为除非你将整流二极管拆下来,不然的话不能“用手”卸下已焊接的电子元器件。当然,你肯定是不想破坏正常运行的其他电子元器件。此案例的目的是说明为什么应该注意PCB板上电子元器件的放置。

整流二极管应用

整流二极管的应用范围很广。以下是一些常见二极管应用的示例:

对电压进行整流,例如将交流电压转换为直流电压与电源的信号隔离参考电压改变信号的大小信号混合检测信号照明系统激光器用二极管

以上,就是关于整流二极管的相关内容,大家如果有什么疑问或者补充欢迎来评论区补充。

上面关于全波整流和半波整流等内容讲得还不是很详细,如果大家有需要,之后可以更为详细地讲讲。

图片来源于网络

二极管整流电路工作原理和电路赏析

二极管整流电路工作原理

二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=vi-vd。当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。半波整流电路输入和输出电压的波形如图所示。

对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。

通过上述分析可以得到半波整流电路的基本特点如下:

(1)半波整流输出的是一个直流脉动电压。

(2)半波整流电路的交流利用率为50%。

(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。

(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

全波整流

当输入电压处于交流电压的正半周时,二极管D1导通,输出电压Vo=vi-VD1。当输入电压处于交流电压的负半周时,二极管D2导通,输出电压Vo=vi-VD2。

由上述分析可知,二极管全波整流电路输出的仍然是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。

晶体二极管组成的各种整流电路。

一、半波整流电路

下面从图5-2的波形图上看着二极管是怎样整流的。  图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π 时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被“削”掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。

这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以“牺牲”一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

二极管整流电路电路赏析

全波整流电路

如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2、Rfz ,两个通电回路。

全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π间内,e2a 对Dl为正向电压,D1导通,在Rfz 上得到上正下负的电压;e2b 对D2为反向电压,D2 不导通(见图5-4(b)。在π-2π时间内,e2b 对D2为正向电压,D2导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1为反向电压,D1 不导通(见图5-4(C)。

如此反复,由于两个整流元件D1、D2轮流导电,结果负载电阻Rfz 上在正、负两个半周作用期间,都有同一方向的电流通过,如图5-4(b)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍)。

图5-3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。

图5-5(a )为桥式整流电路图,(b)图为其简化画法。

桥式整流电路

桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成“桥”式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz 、D3通电回路,在Rfz ,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。

上述工作状态分别如图5-6(A) (B)所示。

如此重复下去,结果在Rfz ,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半!

整流元件的选择和运用

需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1 所列参数可供选择二极管时参考。

“另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,”流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时“,由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。

图5-8示出了二极管串联的情况。显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。在二极管上并联的电阻R,可以使电压分配均匀。均压电阻要取阻值比二极管反向电阻值小的电阻器,各个电阻器的阻值要相等。  向电阻值小的电阻器,各个电阻器的阻值要相等。

相关问答

二极管 单相 整流原理 ?

二极管整流是利用了它具有单向导电性,也就是电流只能从正极流向负极,而不能从负极流向正极。只有在二极管两端加正向电压并且大于一定值时,二极管才会导通,...

四个 二极管整流 原理 ?

四个二极管整流桥工作原理,整流桥内部主要是由四个二极管组成的桥路来实现把输入的交流电压转化为输出的直流电压。在整流桥的每个工作周期内,同一时间只有两...

电阻2极管3极管的工作 原理 起什么作用_作业帮

[最佳回答]电阻:限流、分压、把信号电流转化为电压、反馈、取样、等等二极管:整流、稳压、阻尼、箝位等三极管:放大、振荡、稳压、有源滤波等电阻:限流、分压...

快恢复 整流二极管原理 ?

快恢复二极管具有反向阻断时的高耐压和低漏电流,低导通电阻以及正向电流大的特点。由于它被用作开关,因此通常需要具有更快的开关速度。此外,续流二极管的特...

直流电源电路中的 整流 是利用 二极管 将交流电变成脉动的直流电...

[最佳回答]直流是有固定电流方向的电流,如果电流方向随时间变化,则是交流.交流电经过整流以后就是脉动直流,因为它的电压是从零到最大电压之间不断地变化.脉动...

什么是明显的 二极管整流 特性?

1、利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。2、有大功率整流管和小功率整流管。耐压和频率有高有低。2、就原理而言,...

二极管整流 出来为什么还是交流?

交流经过整流堆整流后,只是电流的方向不随时间变化,但是在导通的半周内电流的大小仍随时间而变化(和原来交流电的正半周波形一致)。通过电容充电后(最大可充...

汽车发电机的 整流原理 是什么?

东风汽车用六管交流发电机等。不管是釆用什么类型的交流发电机,但发电机的整交原理是相同的。汽车发电机的整流原理:现用六管交流发电机为例说明。交流发电机...

二极管 电阻的作用和工作 原理 ?

1、整流:利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电2、开关:二极管在正向电压作用下电阻很小,处于导通状态,相当于一只...

直流 整流 电路 原理 ?

直流整流电路工作原理:整流电路”(rectifyingcircuit)是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在...直...

猜你喜欢